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The construction of efficient solar energy converting systems
has been the subject of extensive research in the past decades. For
example, important progress has been made toward the design and
construction of chemical assemblies that function as artificial
reaction centers (RC).1 While advances in protein design have made
possible the construction of protein architectures with nativelike
properties and predictable structures2 and function,3 there are as of
yet no examples of functional protein-based solar energy conversion
systems. We believe the lack of functional protein-based RCs is
primarily due to the difficulty associated with designing and
constructing stable, well-structured frameworks upon which efficient
systems can be built. This communication describes the design and
characterization of an artificial RC protein that closely resembles
the function of the natural photosynthetic reaction center: the
synthetic protein participates in multiple reduction/oxidation cycles
with exogenous acceptors/donors following photoexcitation.

We previously constructed an electron-transfer protein that effi-
ciently converts light into chemical energy, that was built by engin-
eering the parameters that govern protein-mediated electron-transfer
rates: distance (R), driving force (∆G) and reorganization energy
(λ).4 We extend here this strategy to the construction of an artificial
RC protein, designed with the use ofCORE, a protein design pro-
gram developed in our group.5 The designed metalloprotein (aRC)
consists of a tetrahelical bundle functionalized with two bis-histi-
dine-bound metal cofactors: a Ru(bpy)2 moiety and a heme group.
The tetrahelical scaffold is comprised of two identical 54-residue
helix-loop-helix [HLH] peptides joined through a disulfide bond
between the C-terminal cysteines to yield an antiparallel four-helix
bundle. Two bis-histidine binding sites at positions 21 and 42 were
engineered for Ru(bpy)2 and heme binding, respectively (Figure 1).

Positioning of the hydrophilic and hydrophobic residues was
guided by thea-r method, described elsewhere.6 The hydrophilic
exterior of the helices was designed to stabilize the bundle primarily
through salt bridges between Glu and Lys. The identity of the
hydrophobic core residues was determined usingCORE, which
optimizes the heat capacity of unfolding (∆Cp) and the side chain
entropy (∆Sconf), parameters that are correlated to protein thermal
stability and cooperativity, respectively. The input intoCOREwas
the backbone structure shown in Figure 1 in which all core positions
were initially set to Ala and the bound cofactors and exterior
hydrophilic residues are held fixed. The sequence7 output byCORE
that corresponded to the largest value for∆Cp and lowest value
for ∆Sconf was synthesized using standard automated solid-phase
peptide synthesis to produce the helix-loop-helix peptide.8

Incorporation of the Ru(bpy)2 group into [HLH]2 was achieved by
reaction with Ru(bpy)2CO3.4 The location of the bound ruthenium
complex at the designed site was confirmed by chemical cleavage
with cyanogen bromide (CNBr) at the Met residue located in the
loop between helices followed by MALDI-TOF MS analysis.9

The absorption and emission spectra of the ruthenium-modified
protein, Ru[HLH]2, are consistent with bis-histidine ligation (see

Supporting Information). The lifetime of the triplet exited state of
Ru[HLH]2 was determined to be 150( 10 ns.10

The CD spectra of [HLH]2 and Ru[HLH]2 reveal 80( 5%
R-helical content for both proteins (see Supporting Information).
CD spectroscopy was also employed to confirm that, as designed,
cis-Λ-[Ru(bpy)2(his)2] isomer binds to the protein scaffold. The
CD spectrum from 265 to 450 nm of the Ru-modified protein shows
the same signature bands as that of the reference molecule, cis-Λ-
[(Ru(bpy)2(H2O)(py)](ClO4)2 (see Supporting Information).11

The ruthenium-modified protein binds hemin tightly with aKd

) 35 ( 30 nM. The absorption features of the bound heme (see
Supporting Information) are remarkably similar to those of native
bis-histidine-ligatedb-type cytochromes, indicating that heme binds
to Ru[HLH]2 via bis-histidine ligation in a unique, well-defined
environment.

The reduction potential for heme in aRC was determined to be
-115( 10 mV vs NHE using the spectroelectrochemical procedure
described elsewhere.6 This value is more positive than most other
synthetic hemoproteins with bis-histidine-bound heme groups. This
suggests a more effective shielding of the heme group from water,
consistent with the observed tight heme binding. The redox potential
for Ru[HLH]2 was estimated to be+1.25 V based on the potential
of the model compound Ru(bpy)2im2 in DMF.

Photoexcitation of aRC leads to efficient quenching of the lu-
minescence of the ruthenium complex by the heme group. A lower
limit of 5 × 1010 s-1 was estimated for the intramolecular photo-
induced forward ET rate constant from steady-state luminescence
measurements. The charge recombination process, monitored by
transient absorption spectroscopy,12 follows first-order kinetics
yielding a back-electron transfer,kb ) 1.4× 107 s-1 (see Supporting
Information). These results indicate that upon excitation of aRC,

Figure 1. Model structure of the designed protein, aRC, with Ru(bpy)2

chelated to His21 pair (top) and heme bound to His42 pair (middle).
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rapid photoinduced ET from Ru(bpy)2 to heme occurs, followed
by an approximately 3 orders of magnitude slower charge recom-
bination step, yielding a charge-separated state (CSS) with a lifetime
of 70 ns. The most likely explanation for this is a low reorganization
energy (λ ) 0.5 eV) which gives rise to a relatively steep Marcus
inverted region.13

This long-lived CSS makes feasible coupling aRC with an
exogenous donor and acceptor to convert the stored electrical energy
into chemical redox energy, thus mimicking the basic function of
the natural photosynthetic RC. Indeed, conversion of light into
chemical energy is observed upon photoexcitation of aRC in the
presence of two exogenous redox molecules of the type present in
natural bacterial photosynthesis. Cytochromec (cyt c) was chosen
as the electron donor and naphthoquinone-2-sulfonate as the electron
acceptor for their electrochemical properties and solubility in
aqueous media.14 Figure 2 shows that photoexcitation of aRC in
the presence of excess reduced cytc and naphthoquinone-2-
sulfonate results in multiple turnovers whereby cytc is oxidized
and the quinone is reduced. These results are consistent with the
following sequence of reactions: Photoexcitation of the aRC-cyt
c-quinone system results in the formation of the excited state,
*RuII-FeIII , followed by fast intramolecular ET from *RuII to heme
to produce the RuIII-FeII CSS. This is followed by two independent
bimolecular ET reactions: (1) one in which the photogenerated
FeII reduces the naphthoquinone acceptor (Q) to yield the corre-
sponding semiquinone radical anion, Q-•, which is rapidly proto-
nated to form the neutral semiquinone radical, QH•; (2) the other
in which the photogenerated RuIII species oxidizes cytc. In the net
reaction, visible light is converted into chemical redox energy in
the form of the products, cytc+ and QH•. Moreover, the spectrum
in Figure 2 demonstrates that this occurs for at least 10 photocycles.

It should be noted that the two thermal ET processes (reduction
of Q and oxidation of cytc) are exothermic reactions and kinetically
controlled. No attempt was made to probe or influence the sequence
of these reactions; however, being bimolecular, the rates can
obviously be controlled by varying the reactant concentrations.

A number of control experiments were carried out to rule out
other reactions that might lead to the observed products. Irradiation
of Q and cytc yielded no reactions as did irradiation of the ru-
thenium-modified protein (Ru[HLH]2) and Q. In addition, irradi-
ation of aRC in the presence of Q without adding cytc yields just
one equivalent of QH•. Similarly, irradiation of aRC in the presence
of cyt c without adding Q yields just one equivalent of cytc+.

These control experiments clearly show that three ET reactions
must occur to produce the reduced Q and oxidized cytc products.
The first is photoinduced ET from the excited ruthenium complex

[*Ru(II)] to oxidized heme [Fe(III)] followed by reduction of the
quinone by the reduced heme [Fe(II)] and oxidation of the cytc
by oxidized ruthenium [Ru(III)].

Through a combination of automated computational protein de-
sign and knowledge of the engineering principles of biological
electron tunneling extracted from natural electron-transfer systems,
it was possible to construct a system that functions much like native
photosynthetic RCs. Donor/acceptor distance, free energy, and reor-
ganization energy were optimized to allow efficient charge separa-
tion and slow charge recombination. Although protein complexes
that mimic some of the steps of native RCs have been reported,15

the present system represents the first example of a functional
protein-based artificial RC.

Supporting Information Available: Absorption, emission and CD
spectra of Ru[HLH]2, and transient absorption spectrum of aRC (PDF).
This material is available via the Internet at http://pubs.acs.org.
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Figure 2. Light minus dark difference spectrum obtained by irradiating 1
µM aRC in the presence of 20µM reduced cytochromec (exogenous donor)
and 20 µM naphthoquinone-2-sulfonate (exogenous acceptor).14 (A)
Black: experimental light minus dark spectrum minus authentic 10µM
oxidized minus reduced cytc. Gray: authentic 10µM reduced minus neutral
naphthoquinone-2-sulfonate. (B) Black: experimental light minus dark
spectrum. Gray: authentic oxidized minus reduced 10µM cyt c. See
Supporting Information for experimental details.
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